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ABSTRACT 
 

This paper describes the use of Unmanned Aerial Vehicle 

(UAV) technology to fight apple scab. Specifically, it shows 

how it is possible to improve the scab risk evaluation basing 

on the actual apple leaves development status, yielded from 

UAV images, as input to the infection model. For this 

purpose, we introduce a new index, called Leaf Development 

Index (LDI), which is evaluated during the main growth 

phases of the apple trees using an UAV equipped with both 

multispectral and thermal sensors. Preliminary results are 

reported and discussed. 

 

Index Terms— Apple Scab, Leaf Development Index, 

Unmanned Aerial Vehicles. 
 

1. INTRODUCTION 
 

Scab is one of the most relevant disease in apple farms. It is 

caused by the Ascomycete fungus Venturia inaequalis and 

manifests first as dull black or grey-brown lesions on the 

surface of tree leaves and then on fruits damaging apple's 

quality and aspect. The main problem with this kind of 

disease is that there are no efficient curative treatments to 

apply. Only preventive treatments can lead to the absence of 

this disease from fruits [1] The purpose of this work is to 

exploit UAV technology to improve the scab infection risk 

evaluation. Indeed, to make the most efficient scab preventive 

treatments, it is necessary to know the exact period on which 

the infection could develop. There are various mathematical 

models that can make good risk evaluation analysis using 

local weather data (temperature, humidity, rainfall, wind 

speed, solar radiation, etc. …) as input [2] The problems with 

this kind of models are that they do not have feedback from 

the orchard and they strongly depend from the position and 

distance of the closest weather station. To give to the model 

an environmental feedback, an improved risk evaluation 

mathematical model, called A-Scab, has been introduced in 

[3] . In this model, the infection efficiency during an infection 

period is computed as follows: 
 

 

𝑅𝑖𝑠𝑘𝑖𝑛𝑓 = ∑ 𝑆𝑅𝐴𝑑𝑖𝑠

𝑛

𝑖=1

∙ 𝐼𝐸𝑖𝑛𝑓 ∙ 𝐻𝑂𝑆𝑇𝑖𝑛𝑓 ∙ 100          (1) 

 

where n is the number of days including the infection period, 

SRAdis and IEinf are parameters that depend only on weather 

data; HOSTinf represents a parameter that depends 

exclusively on the Leaf Area Index (LAI). The LAI is 

computed using a mathematical model that takes into account 

only the daily average temperature (base 4 [°C]) multiplied 

by an empirical factor [4] . 

In this work, we improve this empirical model, that could be 

inadequate in some cases, through the introduction of a new 

index: leaf development index (LDI) that takes into account 

the area of the leaves and the presence of new leaves (which, 

according to the literature, is a parameter playing a 

fundamental role in the scab infection) from a day to another. 

This index is automatically estimated on each UAV survey, 

then it is converted with a mathematical filter to fit the range 

of the previous LAI index and used as fixing point for the LAI 

model. In this way, we obtain an environmental feedback on 

the status of apple trees that takes into account not only the 

leaves area but also the new leaves appearance, thus 

improving the risk computation of A-Scab model. 

The model and the image analysis algorithms have been 

developed using Matlab® environment and C++ language. 
 

2. TOOLS AND METHODS 
 

The evaluation of the LDI using an UAV requires specific 

sensors and platform. In our tests, we have used an octocopter 

with a 3-axis gimbal which carries a six-band multispectral 

camera and a thermal camera as well. The multispectral 

camera acquires data from bands of 410 [nm] to bands of 900 

[nm] with a resolution of 1280x1024 and the thermal camera 

acquires and stores radiometric data for each pixel with a 

spectral band in the range of 7.5-13.5 [µm]. Due to the fact 

that the multispectral camera requires a distance from the 

object greater than 60 [m] to have a perfect overlap of each 

band image, we have performed acquisitions at a height of 
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about 65 [m] (above ground level) to have the maximum 

IFOV possible that is: 32.50 [mm] and with a field of view of 

41.844 [m] for the horizontal view and 33.516 [m] for the 

vertical view. All the UAV survey has been done according 

to the prescription of the Italian Civil Aviation Authority 

(ENAC) about the usage of UAV between 4 [kg] and 25 [Kg] 

[5]  
 

The LDI evaluation process could be summarized as follows: 
 

 

Fig. 1.  Leaf development index evaluation flow chart. 

 

First of all, different data are acquired as follows: 

•  Multispectral Camera: Acquires a 1280x1024 

image for each of its six spectral bands with a 

radiometric resolution of 10 bit. This sensor is 

used to classify the multispectral images, to 

extract the bounding box features and to evaluate 

the LDI index. 

• Thermal Camera: Acquires a 640x512 image 

which associates to each pixel a thermal value. 

The images are stored with a radiometric 

resolution of 14 bit. This sensor is principally 

used to identify apple trees row at the beginning 

of the trees growth stage. 

•  GPS Sensor: Stores geolocation data for each 

acquired i2mage. 
 

The acquired GPS data are then compared with previous 

geolocation data stored in our database considering possible 

errors due to sensor precision and Kp index. If matches are 

found, an image registration process between the current 

images and the previous flight images is required in order to 

estimate the LDI of the same target during a whole season. 

Therefore, a classification algorithm, which will assign to 

each pixel a class, takes place analyzing the spectral features 

of each pixel of the image and associating it to the class which 

has the most similar spectral characteristics to it. This 

classification process is based on the multispectral images 

and it is used to infer two classes, namely ‘tree’ and ‘soil’ 

classes. For such purpose, it has been used a simple algorithm 

based on the Bayesian decision theory [6]  

Clearly, the worse is the classification of the elements present 

in the image, the worse may be the features extraction of the 

bounding box, the LDI evaluation and consequently the risk 

infection index. After the classification process, the images 

are filtered using median and morphological filter. The 

median filter allows reducing noise, whereas the 

morphological filter with circular structuring elements 

permits to preserve the regions that have analogue shape to 

the structuring element and to erase all other regions. 
 

 

Fig. 2. Example of filtering process: original image [NIR 

band: 800 [nm]] (top left), binarized image (top right), 

outcome of median filter (bottom left), result of 

morphological filter (bottom right). 

The use of a morphological filter on the binarized image also 

allows to merge neighboring regions with similar shape 

improving the extraction of the bounding box features and the 

apple trees row identification.  

To define the LDI, it is necessary to introduce the bounding 

box concept, that is the minimum geometric shape that 



contains a region of interest. The definition of the bounding 

box features depends on the growth phase of apple trees at the 

moment of the first survey. The maximum leaf coverage is 

considered to be about at the same day of the apple harvest. 

If the leaf coverage is not at the maximum growth stage 

possible, then the bounding box is defined using the acquired 

thermal images to identify the position of apple trees rows 

and assigning to them a fixed dimension value defined as 

follows:  

• Bounding box shape: Rectangle centered on the 

apple trees row. 

• Bounding box length: Dimension of the apple 

trees row. 

• Bounding box width: Distance between the 

nearest apple trees row. 

 

Otherwise, if the leaf coverage is at the maximum growth 

stage then the bounding box characteristics are defined as 

follows: 

 

• Bounding box shape: Rectangular 

• Bounding box centroid: 

 

[𝐶𝑥, 𝐶𝑦] = [
𝑀10

𝑀00

,
𝑀01

𝑀00

]          (2) 

 

where Mij  is the image spatial moment. 
 

• Bounding box orientation: It is computed from 

the covariance matrix of the second order central 

moment: 
 

𝑐𝑜𝑣[𝐼(𝑥, 𝑦)] = [
𝜇20

′ 𝜇11
′

𝜇11
′ 𝜇02

′ ]          (3) 

 

where I(x,y) is the pixel intensity matrix and µ'pq are the 

second order central moment. The eigenvectors of this matrix 

correspond to the major and minor axes of the image 

intensity, so the orientation Θ can be extracted from the angle 

of the eigenvector associated with the largest eigenvalue 

towards the axis closest to this eigenvector [7] : 
 

𝜃 =  
1

2
𝑎𝑟𝑐𝑡𝑎𝑛 (

2𝜇11
′

𝜇20
′ − 𝜇02

′ )          (4) 

 

The obtained bounding box are then checked to find 

intersection between elements. If this happens, the bounding 

box involved are merged. 
 

 

Fig. 3. Example of bounding box extraction result in the case 

of maximum leaf growth stage. 

The features of each bounding box are then stored in a 

database and used to compute the LDI during a whole season. 

If the definition of the bounding box has been done using the 

thermal images, at the end of the season when the leaf growth 

stage is at its maximum value the actual bounding box would 

be replaced and stored using the image centroid and second 

order central moment method. 

Once the bounding box features are defined, it is possible to 

compute the LDI for each region as follows: 
 

𝐿𝐷𝐼𝛼 =
𝑝𝑖𝑥𝑒𝑙(1) ⊆ 𝐵. 𝐵𝑂𝑋𝛼

𝑝𝑖𝑥𝑒𝑙(𝑡𝑜𝑡) ⊆ 𝐵. 𝐵𝑂𝑋𝛼

          (5) 

 

where α ϵ [0, N]  is the index of the bounding box of interest from 

the N extracted boxes. Pixel(0) are pixels with logical value equal to 

0, pixel(1) are pixels with logical value equal to 1 and pixel(tot) = 

pixel(0) ⋃ pixel(1) . 

This value is then multiplied by a conversion factor to fit the LAI 

range defined in the A-Scab Model. 

 

3. LDI-BASED INFECTION RISK EVALUATION 
 

The procedures showed above permit the mathematical 

model of the infection risk to be strongly tied to the local 

reality of the orchard. To better understand the relevance of 

the LDI on the risk evaluation process, in the following 

figures it has been reported an example of how this index 

influences the scab infection risk evaluation. 
 



 

Fig.  4. LAI curve before and after the LDI fixing point. 

The fixing point has been applied on the first of April and 

then it has been proceeded using the LAI model commonly 

used in A-Scab using the fixing point as offset. As could be 

seen in the figures below, the introduction of the fixing point 

leads to a readjustment of the risk infection dates and values. 

 

Fig.  6. Risk evaluation without LDI evaluation. 

 

 

Fig.  7. Risk evaluation with LDI evaluation. 

Indeed, our technique permits to better tune the mathematical 

model values for the LAI computation using information that 

comes directly from the orchard. This leads to more precise 

values of the infection risk taking into account the possible 

heterogeneity of the orchard. Moreover, using only the LAI 

mathematical model for the risk infection evaluation, it is not 

possible to discriminate between the infection risk of apple 

trees row and the infection risk of the entire orchard because 

it is described only by the acquired weather data at the 

geographical position of the weather station. Instead, using 

periodical survey with an UAV to estimate the LDI, it is 

possible to relate an infection risk index to each apple trees 

row. 
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